Blog Page


3D robotic spine 'twin' and sensor offer new way to preview surgical interventions – EurekAlert

FAU engineering scientists and Marcus Neuroscience Institute Neurosurgeon Collaborate on novel 3D Human Spine Replica for Cervical Disc Implant
Florida Atlantic University
image: Researchers have developed a 3D printed spine replica modified to include an artificial disc implant and outfitted with a soft magnetic sensor array. view more 
Credit: Florida Atlantic University
Degenerative disc disease affects about 40 percent of people aged 40, increasing to about 80 percent among those aged 80 or older. The disease, which is the deterioration of one or more intervertebral discs of the spine, often is surgically treated with cervical disc implants.
In order to determine if a patient is a candidate for a cervical disc implant, surgeons have to rely primarily on the findings of diagnostic imaging studies, without any input from biomechanical data to optimize the type of prosthesis. This may occasionally lead to complications and implant failure.
To address these problems, Florida Atlantic University’s Erik Engeberg, Ph.D., senior author of the study, and researchers from the College of Engineering and Computer Science, in collaboration with Frank Vrionis, M.D., senior author of the study and director of the Marcus Neuroscience Institute, part of Baptist Health, have created a novel robotic replica of a human spine to enable surgeons to preview the effects of surgical interventions prior to the operation.
The researchers have developed a 3D printed spine replica modified to include an artificial disc implant and outfitted with a soft magnetic sensor array. The Marcus Neuroscience Institute has its hub on Boca Raton Regional Hospital’s campus and satellite locations at Bethesda Hospital in Boynton Beach and Deerfield Beach.
The patient-specific robotic spine model was based on a CT scan of the human spine. A modified artificial disc was ‘implanted’ into the cervical spine replica and the soft magnet was embedded in the vertebra replica. A robotic arm flexed and extended the cervical spine replica while the intervertebral loads were monitored with the soft magnetic sensor array to classify the spine posture with four different machine-learning algorithms. The algorithms classified the amplitude and the locations that external loads were applied. Researchers then compared the capabilities of the algorithms to classify five different postures of the human spine robotic replica (center, mid-flexion, flexion, mid-extension and extension). 
Results of the study, published in the journal Sensors, showed that the soft magnetic sensor array system had the high capability to classify the five different postures of the spine with 100 percent accuracy, which can be a predictor of different problems of the spine that people experience. These results indicate that the integration of the soft magnetic sensor array within the artificial disc ‘implanted,’ robotically actuated spine replica has the potential to generate physiologically relevant data before invasive surgeries, which could be used preoperatively to assess the suitability of a particular intervention for specific patients.
“A flexible magnetic sensor array is a new method to realize soft and stretchable magnets by mixing silicone with magnetic powder,” said Engeberg, a professor, Department of Ocean and Mechanical Engineering within the College of Engineering and Computer Science, member of FAU’s Center for Complex Systems and Brain Sciences within the Charles E. Schmidt College of Science, and a member of the FAU Stiles-Nicholson Brain Institute. “These sensors are low-cost, highly sensitive, and easily integrated into robotic systems as the soft medium can be manipulated in many shapes and sizes.”
In addition to preoperatively assessing the suitability of a particular intervention for specific patients, this new approach could potentially assist the postoperative care of people with cervical disc implants. Currently, postoperative instructions for patients with spine implants are qualitative (do as much as you can until the pain starts), creating fears in both the patient and the surgeon. Questions regarding how much bending, lifting, and exercising is permissible after a cervical implant operation could be studied and correlated with biomechanical data generated by the sensorized robotic replica with individually tailored postoperative care that could be prescribed to reduce complications.
“This new approach has a powerful potential to enable surgeons to preview and compare the effects of different surgical interventions in a patient-specific manner using robotically actuated spine twins,” said Vrionis.  “Moreover, the novel system could help in determining whether a constrained, semi-constrained, or unconstrained device could be the best fit or even a fusion device. Following surgery, the spine replica could also assist us in estimating whether there is sufficient motion at the operated level and possibly helping us to determine if we need to change the rehabilitation program to prevent calcification and subsequent loss of intended motion.”
In the future, the researchers say that this sensor could also potentially be coupled with CT scans to address the issue of spinal malalignment.
“Our new approach could provide surgeons with first-hand data to compare the effects of different surgical interventions to treat diseases of the spine before surgery and potentially reduce the rates of complication and failure of artificial disc implantation,” said study co-author Chi-Tay Tsai, Ph.D., a professor in FAU’s Department of Ocean and Mechanical Engineering.
Study co-authors are Maohua Lin, Ph.D., research scientist; and Moaed A. Abd, a Ph.D. student and research assistant, FAU’s Department of Ocean and Mechanical Engineering; and Alex Taing, an undergraduate student at the University of Virginia.
– FAU –
About FAU’s College of Engineering and Computer Science:
The FAU College of Engineering and Computer Science is internationally recognized for cutting edge research and education in the areas of computer science and artificial intelligence (AI), computer engineering, electrical engineering, biomedical engineering, civil, environmental and geomatics engineering, mechanical engineering, and ocean engineering. Research conducted by the faculty and their teams expose students to technology innovations that push the current state-of-the art of the disciplines. The College research efforts are supported by the National Science Foundation (NSF), the National Institutes of Health (NIH), the Department of Defense (DOD), the Department of Transportation (DOT), the Department of Education (DOEd), the State of Florida, and industry. The FAU College of Engineering and Computer Science offers degrees with a modern twist that bear specializations in areas of national priority such as AI, cybersecurity, internet-of-things, transportation and supply chain management, and data science. New degree programs include Master of Science in AI (first in Florida), Master of Science and Bachelor in Data Science and Analytics, and the new Professional Master of Science and Ph.D. in computer science for working professionals. For more information about the College, please visit eng.fau.edu
About Florida Atlantic University:
Florida Atlantic University, established in 1961, officially opened its doors in 1964 as the fifth public university in Florida. Today, the University serves more than 30,000 undergraduate and graduate students across six campuses located along the southeast Florida coast. In recent years, the University has doubled its research expenditures and outpaced its peers in student achievement rates. Through the coexistence of access and excellence, FAU embodies an innovative model where traditional achievement gaps vanish. FAU is designated a Hispanic-serving institution, ranked as a top public university by U.S. News & World Report and a High Research Activity institution by the Carnegie Foundation for the Advancement of Teaching. For more information, visit www.fau.edu.
About Marcus Neuroscience Institute:
The Marcus Neuroscience Institute at Boca Raton Regional Hospital, is an innovative nexus for neurologic and neurosurgical care. This new 67,000-square-foot facility houses a 20-bed Neuro Intensive Care and Step-Down Unit, four dedicated operating rooms — including one equipped with intraoperative MRI and two with intraoperative CT capability — and a biplane angiography suite, a crucial component in the diagnosis and care of neurological conditions.
The Institute was created out of a lead $25 million grant from the Marcus Foundation and was initiated by Billi and Bernie Marcus, former CEO of The Home Depot. The institute is staffed by a team of clinicians highly trained in all facets of the neurosciences, including stroke, movement disorders, neuro-oncology, epilepsy, memory disorders, Alzheimer’s disease, multiple sclerosis and spinal conditions. The medical staff also includes neurointensivists, physicians who are specifically trained in neurocritical care. Along with having extensive knowledge about treating neurological injuries, neurointensivists assume responsibility for other areas of care in the ICU that may have otherwise been provided by specialists. This includes cardiology, endocrinology, infectious disease and pulmonary medicine.
Each patient room at the Marcus Neuroscience Institute is private and equipped with special monitoring capabilities that provide vital information on both a patient’s neurological and cardiovascular functions. Rooms also feature an abundance of natural lighting and an antechamber where family members can stay during the patient’s hospitalization, as both of these factors have been shown to positively influence recovery in neurological conditions.
Marcus Neuroscience Institute at Boca Raton Regional Hospital has earned the Gold Seal of Approval® for Spinal Surgery Certification from The Joint Commission, the nation’s premier independent accreditation organization. The Gold Seal reflects commitment to the highest standards of excellence and safety in patient care. Marcus Neuroscience Institute at Boca Raton Regional Hospital is a DNV Certified Comprehensive Stroke Center, which is the nation’s highest level of stroke accreditation. For more information visit: Neuroscience Institute | Boca Raton Regional Hospital (brrh.com)
Computational simulation/modeling
Robotic Replica of a Human Spine Uses Soft Magnetic Sensor Array to Forecast Intervertebral Loads and Posture after Surgery
Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.
Media Contact
Gisele Galoustian
Florida Atlantic University
Cell: 561-985-4615

Florida Atlantic University
EurekAlert! The Global Source for Science News
AAAS - American Association for the Advancement of Science
Copyright © 2022 by the American Association for the Advancement of Science (AAAS)
Copyright © 2022 by the American Association for the Advancement of Science (AAAS)


× How can I help you?