fbpx

Blog Page

Uncategorized

Novel method aims to demystify communication in the brain – Medical Xpress


Forget Password?
Learn more
share this!
1
9
Share
Email
August 18, 2022
by Sara Vaccar,
From sunrise to sunset, the flow of communication across brain areas helps to facilitate every move we make. Seeing, hearing, walking, and singing, for example, are made possible by interactions between large collections of neurons that fire simultaneously in our brains. Collaborators from Carnegie Mellon University, Albert Einstein College of Medicine, and the Champalimaud Foundation have teamed up for more than a decade to better understand the flow of communication in the brain using state-of-the-art experimental and statistical methods. Their latest win is a brand-new statistical method, Delayed Latents Across Groups (DLAG), that disentangles signals relayed between brain areas, even when the communication between brain areas is bidirectional.

“The method that we’ve developed, DLAG, fits within the broader category of machine learning or statistical methods that are examining high-dimensional . The novel aspect is to identity activity patterns that are shared across different brain areas,” said Evren Gokcen, a graduate student in electrical and computer engineering at Carnegie Mellon.
“For decades, studies have focused on recording one or a handful of neurons from one brain area at a time. But with advances in neural recording technology, the bottleneck has shifted to being able to analyze and interpret recordings of large populations of neurons from multiple brain areas.”
It is generally believed that tasks in the brain are accomplished by neurons changing their activity together. An activity pattern refers to the specific ways neurons coordinate their activity with each other. One challenge with identifying involved in between brain areas lies in the fact that this communication usually occurs bidirectionally and concurrently. The neural recordings in turn display a tangled view of communication.
“To make progress in disentangling communication, we have leveraged a simple insight: You can’t send signals instantaneously; it takes some amount of time for information to travel,” explained Gokcen. “Video conferencing is a great point of reference when thinking about a delay in communication; it’s similar in the brain. With DLAG, we leverage that time delay, so if the signal first appears in area A and then area B, then we take that as meaning area A sent the signal to area B. Using the DLAG method, we can tease apart concurrently relayed signals.”
Looking at the bigger picture, DLAG could be applied to other neuroscience applications, such as understanding the interaction between different cell types (for example, between inhibitory and excitatory ) or between different layers of the brain.
“The introduction of DLAG is like introducing a scalpel to gain potentially deeper insights about how brain areas communicate with each other,” says Byron Yu, professor of biomedical engineering and electrical and computer engineering. “In conjunction with this paper, we’re making our source code available to others in the scientific community. DLAG can be used to study additional brain systems outside of the visual system where we focused, for example to study memory, decision making, and motor control.”
The paper is published in Nature Computational Science.


Explore further

Disentangling interactions across brain areas


More information: Byron Yu, Disentangling the flow of signals between populations of neurons, Nature Computational Science (2022). DOI: 10.1038/s43588-022-00282-5

Journal information: Nature Computational Science

Citation: Novel method aims to demystify communication in the brain (2022, August 18) retrieved 18 August 2022 from https://medicalxpress.com/news/2022-08-method-aims-demystify-brain.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further
Facebook
Twitter
Email
Feedback to editors
3 hours ago
0
10 hours ago
1
Aug 17, 2022
0
Aug 17, 2022
0
Aug 16, 2022
0
20 minutes ago
59 minutes ago
2 hours ago
2 hours ago
3 hours ago
3 hours ago
3 hours ago
Mar 01, 2022
Feb 03, 2022
Jun 10, 2022
May 19, 2022
Oct 13, 2021
Mar 22, 2018
10 hours ago
3 hours ago
2 hours ago
5 hours ago
6 hours ago
8 hours ago
Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).
Please select the most appropriate category to facilitate processing of your request
Thank you for taking time to provide your feedback to the editors.
Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.
Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient’s address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Medical Xpress in any form.

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we’ll never share your details to third parties.
More information Privacy policy
Daily science news on research developments and the latest scientific innovations
The latest engineering, electronics and technology advances
The most comprehensive sci-tech news coverage on the web
This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.

source

× How can I help you?