fbpx

Blog Page

Uncategorized

12 Exciting Engineering Milestones to Look for in 2022 – IEEE Spectrum

IEEE websites place cookies on your device to give you the best user experience. By using our websites, you agree to the placement of these cookies. To learn more, read our Privacy Policy.
An electric aircraft race, a new dark-matter detector, and a permanent Chinese space station await

An illustration of a satellite holding a ray gun in a cartoon style hand. MCKIBILLO
In August, NASA will launch the Psyche mission, sending a deep-space orbiter to a weird metal asteroid orbiting between Mars and Jupiter. While the probe’s main purpose is to study Psyche’s origins, it will also carry an experiment that could inform the future of deep-space communications. The Deep Space Optical Communications (DSOC) experiment will test whether lasers can transmit signals beyond lunar orbit. Optical signals, such as those used in undersea fiber-optic cables, can carry more data than radio signals can, but their use in space has been hampered by difficulties in aiming the beams accurately over long distances. DSOC will use a 4-watt infrared laser with a wavelength of 1,550 nanometers (the same used in many optical fibers) to send optical signals at multiple distances during Psyche’s outward journey to the asteroid.

An illustration of a battery with wings and a spinning propeller. MCKIBILLO
For the first time in almost a century, the U.S.-based National Aeronautic Association (NAA) will host a cross-country aircraft race. Unlike the national air races of the 1920s, however, the Pulitzer Electric Aircraft Race, scheduled for 19 May, will include only electric-propulsion aircraft. Both fixed-wing craft and helicopters are eligible. The competition will be limited to 25 contestants, and each aircraft must have an onboard pilot. The course will start in Omaha and end four days later in Manteo, N.C., near the site of the Wright brothers’ first flight. The NAA has stated that the goal of the cross-country, multiday race is to force competitors to confront logistical problems that still plague electric aircraft, like range, battery charging, reliability, and speed.
An illustration of the wifi signal and an arrow near the word u201c6Ghz.u201d MCKIBILLO
Wi-Fi is getting a boost with 1,200 megahertz of new spectrum in the 6-gigahertz band, adding a third spectrum band to the more familiar 2.4 GHz and 5 GHz. The new band is called Wi-Fi 6E because it extends Wi-Fi’s capabilities into the 6-GHz band. As a rule, higher radio frequencies have higher data capacity, but a shorter range. With its higher frequencies, 6-GHz Wi-Fi is expected to find use in heavy traffic environments like offices and public hotspots. The Wi-Fi Alliance introduced a Wi-Fi 6E certification program in January 2021, and the first trickle of 6E routers appeared by the end of the year. In 2022, expect to see a bonanza of Wi-Fi 6E–enabled smartphones.
An illustration of a chip dancing and holding a hat with u201c3nmu201d at the center. MCKIBILLO
Taiwan Semiconductor Manufacturing Co. (TSMC) plans to begin producing 3-nanometer semiconductor chips in the second half of 2022. Right now, 5-nm chips are the standard. TSMC will make its 3-nm chips using a tried-and-true semiconductor structure called the FinFET (short for “fin field-effect transistor”). Meanwhile, Samsung and Intel are moving to a different technique for 3 nm called nanosheet. (TSMC is eventually planning to abandon FinFETs.) At one point, TSMC’s sole 3-nm chip customer for 2022 was Apple, for the latter’s iPhone 14, but supply-chain issues have made it less certain that TSMC will be able to produce enough chips—which promise more design flexibility—to fulfill even that order.
An illustration of a building MCKIBILLO
After Facebook (now Meta) announced it was hell-bent on making the metaverse real, a host of other tech companies followed suit. Definitions differ, but the basic idea of the metaverse involves merging virtual reality and augmented reality with actual reality. Also jumping on the metaverse bandwagon is the government of the South Korean capital, Seoul, which plans to develop a “metaverse platform” by the end of 2022. To build this first public metaverse, Seoul will invest 3.9 billion won (US $3.3 million). The platform will offer public services and cultural events, beginning with the Metaverse 120 Center, a virtual-reality portal for citizens to address concerns that previously required a trip to city hall. Other planned projects include virtual exhibition halls for school courses and a digital representation of Deoksu Palace. The city expects the project to be complete by 2026.
An illustration of a bird made up of squares. MCKIBILLO
In 2022, IBM will debut a new quantum processor—its biggest yet—as a stepping-stone to a 1,000-qubit processor by the end of 2023. This year’s iteration will contain 433 qubits, three times as much as the company’s 127-qubit Eagle processor, which was launched last year. Following the bird theme, the 433- and 1,000-qubit processors will be named Condor. There have been quantum computers with many more qubits; D-Wave Systems, for example, announced a 5,000-qubit computer in 2020. However, D-Wave’s computers are specialized machines for optimization problems. IBM’s Condors aim to be the largest general-purpose quantum processors.
An illustration of two dotted arrow headed lines and two circles with the letter u201cpu201d on them. MCKIBILLO
The Forward Search Experiment (FASER) at CERN is slated to switch on in July 2022. The exact date depends on when the Large Hadron Collider is set to renew proton-proton collisions after three years of upgrades and maintenance. FASER will begin a hunt for dark matter and other particles that interact extremely weakly with “normal” matter. CERN, the fundamental physics research center near Geneva, has four main detectors attached to its Large Hadron Collider, but they aren’t well-suited to detecting dark matter. FASER won’t attempt to detect the particles directly; instead, it will search for the more strongly interacting Standard Model particles created when dark matter interacts with something else. The new detector was constructed while the collider was shut down from 2018 to 2021. Located 480 meters “downstream” of the ATLAS detector, FASER will also hunt for neutrinos produced in huge quantities by particle collisions in the LHC loop. The other CERN detectors have so far failed to detect such neutrinos.
An illustration of the pong game with the numbers u201c6u201d and u201c9u201d on top. MCKIBILLO
Atari changed the course of video games when it released its first game, Pong, in 1972. While not the first video game—or even the first to be presented in an upright, arcade-style cabinet—Pong was the first to be commercially successful. The game was developed by engineer Allan Alcorn and originally assigned to him as a test after he was hired, before he began working on actual projects. However, executives at Atari saw potential in Pong’s simple game play and decided to develop it into a real product. Unlike the countless video games that came after it, the original Pong did not use any code or microprocessors. Instead, it was built from a television and transistor-transistor logic.
An illustration of a generator with large, circular blades. MCKIBILLO
Utility company Energias de Portugal (EDP), based in Lisbon, is on track to begin operating a 3-megawatt green hydrogen plant in Brazil by the end of the year. Green hydrogen is hydrogen produced in sustainable ways, using solar or wind-powered electrolyzers to split water molecules into hydrogen and oxygen. According to the International Energy Agency, only 0.1 percent of hydrogen is produced this way. The plant will replace an existing coal-fired plant and generate hydrogen—which can be used in fuel cells—using solar photovoltaics. EDP’s roughly US $7.9 million pilot program is just the tip of the green hydrogen iceberg. Enegix Energy has announced plans for a $5.4 billion green hydrogen plant in the same Brazilian state, Ceará, where the EDP plant is being built. The green hydrogen market is predicted to generate a revenue of nearly $10 billion by 2028, according to a November 2021 report by Research Dive.
An illustration of a space station MCKIBILLO
China is scheduled to complete its Tiangong (“Heavenly Palace”) space station in 2022. The station, China’s first long-term space habitat, was preceded by the Tiangong-1 and Tiangong-2 stations, which orbited from 2011 to 2018 and 2016 to 2019, respectively. The new station’s core module, the Tianhe, was launched in April 2021. A further 10 missions by the end of 2022 will deliver other components and modules, with construction to be completed in orbit. The final station will have two laboratory modules in addition to the core module. Tiangong will orbit at roughly the same altitude as the International Space Station but will be only about one-fifth the mass of the ISS.
An illustration of a lightning bolt in an ice cube. MCKIBILLO
Cryogenic energy-storage company Highview Power will begin operations at its Carrington plant near Manchester, England, this year. Cryogenic energy storage is a long-term method of storing electricity by cooling air until it liquefies (about –196 °C). Crucially, the air is cooled when electricity is cheaper—at night, for example—and then stored until electricity demand peaks. The liquid air is then allowed to boil back into a gas, which drives a turbine to generate electricity. The 50-megawatt/250-megawatt-hour Carrington plant will be Highview Power’s first commercial plant using its cryogenic storage technology, dubbed CRYOBattery. Highview Power has said it plans to build a similar plant in Vermont, although it has not specified a timeline yet.
An illustration of a coin with stars around it. MCKIBILLO
Seattle-based startup Nori is set to offer a cryptocurrency for carbon removal. Nori will mint 500 million tokens of its Ethereum-based currency (called NORI). Individuals and companies can purchase and trade NORI, and eventually exchange any NORI they own for an equal number of carbon credits. Each carbon credit represents a tonne of carbon dioxide that has already been removed from the atmosphere and stored in the ground. When exchanged in this way, a NORI is retired, making it impossible for owners to try to “double count” carbon credits and therefore seem like they’re offsetting more carbon than they actually have. The startup has acknowledged that Ethereum and other blockchain-based technologies consume an enormous amount of energy, so the carbon it sequesters could conceivably originate in cryptocurrency mining. However, 2022 will also see Ethereum scheduled to switch to a much more energy-efficient method of verifying its blockchain, called proof-of-stake, which Nori will take advantage of when it launches.
Michael Koziol is an associate editor at IEEE Spectrum where he covers everything telecommunications. He graduated from Seattle University with bachelor’s degrees in English and physics, and earned his master’s degree in science journalism from New York University.
Here are Spectrum’s most-read features from 2000-2020
A variety of climate-friendly strategies will be on show, along with the athletes
The National Speed Skating Oval (known as “The Ice Ribbon”) in Beijing will host speed skaters during the upcoming games. Ice here is formed using climate-friendly refrigeration. The facility also boasts outside architectural glass that includes photovoltaic elements, allowing the structure to generate electricity during the day.
About 160 kilometers northwest of Beijing, the city of Zhangjiakou with its rugged terrain boasts some of the richest wind and solar resources in China. Renewables account for nearly half of the city’s electricity output with less than a third of its full solar and wind potential of 70 gigawatts installed so far.
That makes it an ideal cohost with Beijing for the 2022 Winter Olympic and Paralympic Games, which China plans to make the greenest yet. The plan is to power all 26 venues fully with renewables, marking a first in the games’ history.
The Beijing 2022 Organising Committee aims to make the games carbon neutral, or as close as possible—a benchmark for the International Olympic Committee’s mission to make the Olympics carbon positive by 2024.
Besides being a symbol for President Xi Jinping’s ambitious goal of China being carbon neutral by 2060, the 2022 games should drive sustainable development in the region. The event has already helped Beijing clean up its skies and environment, and has fired up local energy-technology markets. It will also be a global stage to showcase new energy-efficiency, alternate-transport, and refrigeration technologies.
The Olympics will account for only a small fraction of the country’s annual electricity consumption. Powering them with clean energy sources won’t be difficult given China’s plentiful renewable capacity, says Michael Davidson, an engineering-systems and global-policy expert at the University of California, San Diego.
But Davidson also points out that insufficient infrastructure to manage intermittent renewables and electricity-dispatch practices that don’t prioritize them mean that much of China’s green-power capacity is often not put to use. And because the game venues are connected to a grid that is powered by a variety of sources, asserting that all the electricity used at the games is 100 percent from clean energy sources is “complicated,” he says. Nonetheless, the games will be important in raising the profile of green energy. “The hope is that this process will put into place some institutions that could help leverage a much broader-scale move to green.”
The Games will offer a global stage to showcase new energy-efficiency, alternate-transport, and refrigeration technologies.
Case in point: The flexible DC grid put into place in Zhiangjiakou in 2020 will let 22.5 billion kilowatt-hours of wind and solar energy flow from Zhiangjiakou to Beijing every year. By the time the Paralympics end in March, the game venues are expected to have consumed about 400 million kWh of electricity. If all of it is indeed provided by renewables, that should reduce carbon emissions by 320,000 tonnes, according to sports outlet Inside the Games. After the athletes go home, the flexible DC grid will continue to clean up around 10 percent of the capital’s immense electricity consumption.
Green transport infrastructure being built to shuttle athletes and spectators between venues will also be part of the games’ lasting legacy. A clean energy–powered high-speed railway that takes 47 minutes to travel between Beijing and Zhangjiakou was inaugurated in 2019. More than 85 percent of public-transport vehicles at the Olympics will be powered by batteries, hydrogen fuel cells, or natural gas, according to state media.
In August, officials at the Chinese capital revealed a five-year hydrogen-energy plan, with goals to build 37 fueling stations and have about 3,000 fuel-cell vehicles on the road by 2023, for which the Olympics should also be a stepping-stone. Already, hydrogen fueling stations built by China’s petrochemical giant Sinopec, Pennsylvania-based Air Products, and French company Air Liquide have cropped up in Beijing, Zhiangjiakou, and the Yanqing competition zone located in between.
In Yanqing alone, 212 fuel-cell buses made by Beijing-based Beiqi Foton Motor Co. will shuttle spectators around. Even the iconic Olympic torch will burn hydrogen for its flame.
Even the iconic Olympic torch will burn hydrogen for its flame.
The 2022 event will also put a limelight on climate-friendly refrigeration. The immense 12,000-square-meter speed-skating oval in downtown Beijing—8 times the size of a hockey rink—will be the first in the world to use carbon dioxide for making ice.
“We’ve built skating rinks with carbon dioxide direct cooling but never a speed-skating oval,” says Wayne Dilk of Toronto-based refrigeration company CIMCO Refrigeration, which has built most of the National Hockey League arenas in North America and designed and provided consulting services for the Olympics’ icy venues.
Ice-rink technology typically relies on refrigerants siphoning heat away from brine circulated under the floors, Dilk explains. But CO2-based cooling systems, which are getting more popular mainly in Europe and North America for supermarkets, food-manufacturing plants, and ice rinks, use CO2 both as the refrigerant and for transporting heat away from under the floor where it is pumped in liquid form.
CO2 is a climate villain, of course, but conventional hydrofluorocarbon refrigerants are worse. The common R-22 form of Freon, for example, is about 1,800 times as potent as a greenhouse gas. CO2 cooling systems are also 30 percent more energy efficient than Freon, says Dilk. Plus, the CO2 system produces higher-temperature waste heat, which can be used for space heating and hot water. And while the system is more expensive to build because it runs at higher pressure, the temperature across the large surface stays within a range of only 0.5 °C, giving more uniform ice. Consistent temperature and ice quality generate better competitive racing times. The Beijing 2022 hockey arenas and sliding center for bobsled and luge use climate-friendly ammonia or Opteon as refrigerants. Besides being a key part of the greenest Winter Olympics, these state-of-the-art ice venues should seal the deal for another goal China has in 2022: to establish itself as a world-class winter sports and tourism destination.
This article appears in the January 2022 print issue as “China’s Green Winter Olympics .”

source

× How can I help you?