fbpx

Blog Page

Uncategorized

Emmy Award Winner's Algorithms Bring High-Quality Video to Your TV – IEEE Spectrum

IEEE websites place cookies on your device to give you the best user experience. By using our websites, you agree to the placement of these cookies. To learn more, read our Privacy Policy.
He is working on making high-res images for the metaverse
Alan Conrad Bovik’s passion for science fiction inspired him to pursue a career in engineering. His favorite sci-fi authors when he was young were Arthur C. Clarke, who penned 2001: A Space Odyssey, and Isaac Asimov, author of the Foundation series. Bovik says they wrote from a “very scientific point of view”—which made him want to help develop aerospace technology that would send humans “to other worlds.”
But he decided to study nuclear engineering in school—which then seemed like the future of energy. He discovered, however, that he didn't like the subject because it “required too much chemistry and memorization,” he says with a laugh. When he took a course in computer programming, he fell in love with it and ended up changing his major to computer engineering.
While pursuing a Ph.D. at the University of Illinois Urbana-Champaign, Bovik found his calling: digital image processing. It is a technology, he says, that back then didn’t have many applications and seemed like something out of a sci-fi novel.
The IEEE Fellow has since done groundbreaking work in the field.
He created theoretical models of how people will perceive the quality of an image or video after it has been compressed. He has used the models to develop algorithms that automatically measure picture quality.
Employer: University of Texas
Title: Professor of engineering
Member grade: Fellow
Alma mater: University of Illinois
What TV shows or movies have you watched and enjoyed recently? “The Vikings” and “The Last Kingdom”
What book would you recommend to others?The Fifth Season by N.K. Jemisin
If you weren’t an engineer, what would be your job? Neuroscientist or cinematographer
Programs he helped develop include the Structural SIMilarity (SSIM) index, the MOtion-tuned Video Integrity Evaluation (MOVIE) index, visual information fidelity algorithms, and the Video Multimethod Assessment Fusion (VMAF) metric. His video quality prediction technology is used by streaming services, broadcasting companies, movie studios, and technology companies worldwide.
Bovik has received several awards for his work. The Academy of Television Arts and Sciences honored him in 2015 with a Primetime Emmy for Outstanding Achievement in Engineering Development and with a 2020 Technology and Engineering Emmy. IEEE recognized Bovik with this year’s Edison Medal “for pioneering high-impact scientific and engineering contributions leading to the perceptually optimized global streaming and sharing of visual media.” The award is sponsored by Samsung Electronics Co.
“The IEEE Edison Medal is the most important award I’ve received,” he says, “because of its history, the amazing past recipients, and because it’s from my peers.”
For nearly 40 years, he has been a professor of electrical and computer engineering at the University of TexasCockrell School of Engineering, in Austin. He serves as director of Cockrell’s Laboratory for Image and Video Engineering, where graduate students and faculty members develop psychometric databases, theories, and algorithms to advance modern perceptual video processing technologies.
Bovik says he plans to remain at the university for another 40 years because “being an educator and video research is the best.”
“I didn't really know how much I would enjoy the academic experience until I started teaching,” he says.
At the University of Illinois, Bovik took a class on digital image processing taught by Thomas Huang, a professor of electrical and computer engineering. The IEEE Life Fellow was a pioneer in computer vision, image processing, and image compression.
Bovik enjoyed the course so much that he joined Huang’s Image Formation and Processing Group, part of the university’s Beckman Institute for Advanced Science and Technology. The group conducted research in image and video coding, computer vision, pattern recognition, and machine learning. The professor became one of Bovik’s doctoral advisors. Bovik’s research focused on nonlinear statistical methods for image analysis and enhancement.
Huang suggested that Bovik consider applying for a job at the University of Texas after he graduated because he thought “it had a great future.” Bovik took his mentor’s advice and moved to Texas in 1984 to work for the Austin school as an assistant professor.
Bovik soon became interested in visual neuroscience and how it could be applied to video engineering. He spoke with several visual neuroscientists and visual psychologists to gain a better understanding of the brain’s visual cortex, which receives, integrates, and processes visual information. Bovik and his team of researchers created mathematical models of the visual cortex as well as the retina, which converts light into neural signals and sends them to the brain.
“The IEEE Edison Medal is the most significant award I’ve received because it’s an award from my peers.”
In the early 2000s, he began studying how people perceive distortions—such as blurring, resizing, and noise—in pictures and videos, as video compression was becoming important because of digital television.
Video images take up a lot of space, and because bandwidth is limited, videos generally need to be compressed before being distributed. But the process can distort the images, causing people to perceive them as blurry or jagged. At the time, there was no program that could accurately predict how badly the images would be distorted before they were distributed, Bovik says, because the algorithms in use didn’t account for how people perceive the images.
Using the mathematical models he and his team previously developed, they created computational algorithms that accurately gauged the way humans would see distortions in compressed images.
portrait of 3 people on a step and repeat background with edison medalBovik with IEEE President Ray Liu [left] and President-Elect Saifur Rahman at the IEEE Honors Ceremony held in San Diego in May.Alan Bovik
Bovik says the key to creating the algorithms was understanding how people process visual information when they first see an image.
“If an image is blurry, you don't have to think about it,” he says. “You sense that it’s blurry instantly.”
In 2001 he and his team developed SSIM. The program predicts how people will perceive a compressed image on a screen by measuring three factors: luminance masking (distortion visibility depending on an image’s brightness), contrast masking (distortion visibility depending on an image’s texture), and structural similarity.
If SSIM predicts an image will appear distorted, the errors can be fixed before the image is shared.
The algorithm has since become part of the International Telecommunication Union’s H.264 video coding reference software standard. The standard allows streaming services, broadcasting companies, and technology companies to include the program in their products and services.
Bovik continues to develop algorithms for image processing and video quality assessment. He and his team are working with Meta’s Reality Labs to develop an algorithm to be used in the metaverse, a simulated “embodied internet” experienced in 3D, as defined by Meta founder Mark Zuckerberg. Virtual and augmented reality will let users feel as if they can move through space at will and pick up objects with ease, Zuckerberg says.
“Back in 1991, when we formed Transactions, not many people understood image processing. It seemed like something out of a science-fiction novel. But things have changed, and now it’s everywhere.”
“Nobody can predict how quickly the metaverse will be upon us,” Bovik says, “but it introduces all kinds of new challenges that are related to visual neuroscience.” The metaverse will require high-resolution images, he says, because the viewer’s eyes are centimeters away from the augmented-reality technology displays.
By developing perception-based algorithms, Bovik says, he hopes to “perceptually optimize the way videos are transmitted, compressed, and displayed in VR and AR.”
Bovik says he joined IEEE as a student member so he could access the organization’s journals. Maintaining that access is why he continues to be a member, he says.
He frequently attends IEEE conferences, where he has met engineers who have become his lifelong friends and mentors, he says. He often brings his students along. “I used to call the opportunity to go to a conference with me the Alan Bovik Motivational System,” he says, laughing.
Because he believed that image processing was going to have “a great feature,” he says, he helped launch the IEEE International Conference on Image Processing and the IEEE Transactions on Image Processing. He is the publication’s longest-serving editor-in-chief.
“When I helped form Transactions in 1991, not many people understood the future applications of image processing,” Bovik says. “The technology seemed like something out of a science-fiction novel, but now it’s everywhere.”
Joanna Goodrich is the assistant editor of The Institute, covering the work and accomplishments of IEEE members and IEEE and technology-related events. She has a master's degree in health communications from Rutgers University, in New Brunswick, N.J.
The prosthetics industry is too focused on high-tech limbs that are complicated, costly, and often impractical
The author, Britt Young, holding her Ottobock iLimb bionic arm.
In Jules Verne’s 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the war’s end, with “not quite one arm between four persons, and exactly two legs between six,” these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.
The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesn’t simply “overcome” his disability; he derives power and ambition from it. Their “crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses” don’t play leading roles in their personalities—they are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?
As Verne understood, the U.S. Civil War (during which 60,000 amputations were performed) inaugurated the modern prosthetics era in the United States, thanks to federal funding and a wave of design patents filed by entrepreneurial prosthetists. The two World Wars solidified the for-profit prosthetics industry in both the United States and Western Europe, and the ongoing War on Terror helped catapult it into a US $6 billion dollar industry across the globe. This recent investment is not, however, a result of a disproportionately large number of amputations in military conflict: Around 1,500 U.S. soldiers and 300 British soldiers lost limbs in Iraq and Afghanistan. Limb loss in the general population dwarfs those figures. In the United States alone, more than 2 million people live with limb loss, with 185,000 people receiving amputations every year. A much smaller subset—between 1,500 to 4,500 children each year—are born with limb differences or absences, myself included.
Today, the people who design prostheses tend to be well-intentioned engineers rather than amputees themselves. The fleshy stumps of the world act as repositories for these designers’ dreams of a high-tech, superhuman future. I know this because throughout my life I have been fitted with some of the most cutting-edge prosthetic devices on the market. After being born missing my left forearm, I was one of the first cohorts of infants in the United States to be fitted with a myoelectric prosthetic hand, an electronic device controlled by the wearer’s muscles tensing against sensors inside the prosthetic socket. Since then, I have donned a variety of prosthetic hands, each of them striving toward perfect fidelity of the human hand—sometimes at a cost of aesthetics, sometimes a cost of functionality, but always designed to mimic and replace what was missing.
In my lifetime, myoelectric hands have evolved from clawlike constructs to multigrip, programmable, anatomically accurate facsimiles of the human hand, most costing tens of thousands of dollars. Reporters can’t get enough of these sophisticated, multigrasping “bionic” hands with lifelike silicone skins and organic movements, the unspoken promise being that disability will soon vanish and any lost limb or organ will be replaced with an equally capable replica. Prosthetic-hand innovation is treated like a high-stakes competition to see what is technologically possible. Tyler Hayes, CEO of the prosthetics startup Atom Limbs, put it this way in a WeFunder video that helped raise $7.2 million from investors: “Every moonshot in history has started with a fair amount of crazy in it, from electricity to space travel, and Atom Limbs is no different.”
We are caught in a bionic-hand arms race. But are we making real progress? It’s time to ask who prostheses are really for, and what we hope they will actually accomplish. Each new multigrasping bionic hand tends to be more sophisticated but also more expensive than the last and less likely to be covered (even in part) by insurance. And as recent research concludes, much simpler and far less expensive prosthetic devices can perform many tasks equally well, and the fancy bionic hands, despite all of their electronic options, are rarely used for grasping.
Two photographs side by side of the author first lifting a kettlebell off of the ground and then extending it in front of her. The kettlebell is gripped by a metal claw that looks designed for that purpose.Activity arms, such as this one manufactured by prosthetics firm Arm Dynamics, are less expensive and more durable than bionic prostheses. The attachment from prosthetic-device company Texas Assistive Devices rated for very heavy weights, allowing the author to perform exercises that would be risky or impossible with her much more expensive iLimb bionic arm.Gabriela Hasbun; Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof
In recent decades, the overwhelming focus of research into and development of new artificial hands has been on perfecting different types of grasps. Many of the most expensive hands on the market differentiate themselves by the number and variety of selectable prehensile grips. My own media darling of a hand, the iLimb from Ottobock, which I received in 2018, has a fist-shaped power grip, pinching grips, and one very specific mode with thumb on top of index finger for politely handing over a credit card. My 21st-century myoelectric hand seemed remarkable—until I tried using it for some routine tasks, where it proved to be more cumbersome and time consuming than if I had simply left it on the couch. I couldn’t use it to pull a door shut, for example, a task I can do with my stump. And without the extremely expensive addition of a powered wrist, I couldn’t pour oatmeal from a pot into a bowl. Performing tasks the cool bionic way, even though it mimicked having two hands, wasn’t obviously better than doing things my way, sometimes with the help of my legs and feet.
When I first spoke with Ad Spiers, lecturer in robotics and machine learning at Imperial College London, it was late at night in his office, but he was still animated about robotic hands—the current focus of his research. Spiers says the anthropomorphic robotic hand is inescapable, from the reality of today’s prosthetics to the fantasy of sci-fi and anime. “In one of my first lectures here, I showed clips of movies and cartoons and how cool filmmakers make robot hands look,” Spiers says. “In the anime Gundam, there are so many close-ups of gigantic robot hands grabbing things like massive guns. But why does it need to be a human hand? Why doesn’t the robot just have a gun for a hand?”
It’s time to ask who prostheses are really for, and what we hope they will actually accomplish.
Spiers believes that prosthetic developers are too caught up in form over function. But he has talked to enough of them to know they don’t share his point of view: “I get the feeling that people love the idea of humans being great, and that hands are what make humans quite unique.” Nearly every university robotics department Spiers visits has an anthropomorphic robot hand in development. “This is what the future looks like,” he says, and he sounds a little exasperated. “But there are often better ways.”
The vast majority of people who use a prosthetic limb are unilateral amputees—people with amputations that affect only one side of the body—and they virtually always use their dominant “fleshy” hand for delicate tasks such as picking up a cup. Both unilateral and bilateral amputees also get help from their torsos, their feet, and other objects in their environment; rarely are tasks performed by a prosthesis alone. And yet, the common clinical evaluations to determine the success of a prosthetic are based on using only the prosthetic, without the help of other body parts. Such evaluations seem designed to demonstrate what the prosthetic hand can do rather than to determine how useful it actually is in the daily life of its user. Disabled people are still not the arbiters of prosthetic standards; we are still not at the heart of design.
Two black and white photographs. On the left showing a nurse watching a man lift small items with a Hosmer Hook, a prosthetic arm with a curved split hook that can be opened and closed through movement of the shoulder. On the right a worker with a hammer attachment in place of a prosthetic hand hammers a nail into a piece of wood.The Hosmer Hook [left], originally designed in 1920, is the terminal device on a body-powered design that is still used today. A hammer attachment [right] may be more effective than a gripping attachment when hammering nails into wood.Left: John Prieto/The Denver Post/Getty Images; Right: Hulton-Deutsch Collection/Corbis/Getty Images
To find out how prosthetic users live with their devices, Spiers led a study that used cameras worn on participants’ heads to record the daily actions of eight people with unilateral amputations or congenital limb differences. The study, published last year in IEEE Transactions on Medical Robotics and Bionics, included several varieties of myoelectric hands as well as body-powered systems, which use movements of the shoulder, chest, and upper arm transferred through a cable to mechanically operate a gripper at the end of a prosthesis. The research was conducted while Spiers was a research scientist at Yale University’s GRAB Lab, headed by Aaron Dollar. In addition to Dollar, he worked closely with grad student Jillian Cochran, who coauthored the study.
Watching raw footage from the study, I felt both sadness and camaraderie with the anonymous prosthesis users. The clips show the clumsiness, miscalculations, and accidental drops that are familiar to even very experienced prosthetic-hand users. Often, the prosthesis simply helps brace an object against the body to be handled by the other hand. Also apparent was how much time people spent preparing their myoelectric prostheses to carry out a task—it frequently took several extra seconds to manually or electronically rotate the wrists of their devices, line up the object to grab it just right, and work out the grip approach.The participant who hung a bottle of disinfectant spray on their “hook” hand while wiping down a kitchen counter seemed to be the one who had it all figured out.
In the study, prosthetic devices were used on average for only 19 percent of all recorded manipulations. In general, prostheses were employed in mostly nonprehensile actions, with the other, “intact” hand doing most of the grasping. The study highlighted big differences in usage between those with nonelectric, body-powered prosthetics and those with myoelectric prosthetics. For body-powered prosthetic users whose amputation was below the elbow, nearly 80 percent of prosthesis usage was nongrasping movement—pushing, pressing, pulling, hanging, and stabilizing. For myoelectric users, the device was used for grasping just 40 percent of the time.
In the United States alone, more than 2 million people live with limb loss, and 185,000 people receive amputations every year.
More tellingly, body-powered users with nonelectric grippers or split hooks spent significantly less time performing tasks than did users with more complex prosthetic devices. Spiers and his team noted the fluidity and speed with which the former went about doing tasks in their homes. They were able to use their artificial hands almost instantaneously and even experience direct haptic feedback through the cable that drives such systems. The research also revealed little difference in use between myoelectric single-grasp devices and fancier myoelectric multiarticulated, multigrasp hands—except that users tended to avoid hanging objects from their multigrasp hands, seemingly out of fear of breaking them.
“We got the feeling that people with multigrasp myoelectric hands were quite tentative about their use,” says Spiers. It’s no wonder, since most myoelectric hands are priced over $20,000, are rarely approved by insurance, require frequent professional support to change grip patterns and other settings, and have costly and protracted repair processes. As prosthetic technologies become more complex and proprietary, the long-term serviceability is an increasing concern. Ideally, the device should be easily fixable by the user. And yet some prosthetic startups are pitching a subscription model, in which users continue to pay for access to repairs and support.
Despite the conclusions of his study, Spiers says the vast majority of prosthetics R&D remains focused on refining the grasping modes of expensive, high-tech bionic hands. Even beyond prosthetics, he says, manipulation studies in nonhuman primate research and robotics are overwhelmingly concerned with grasping: “Anything that isn’t grasping is just thrown away.”
A grid of six photographs showing specialized prosthetic attachments being used for shooting pool, swimming, playing a drum, holding a volleyball, fishing, and throwing a basketball.TRS makes a wide variety of body-powered prosthetic attachments for different hobbies and sports. Each attachment is specialized for a particular task, and they can be easily swapped for a variety of activities. Fillauer TRS
If we’ve decided that what makes us human is our hands, and what makes the hand unique is its ability to grasp, then the only prosthetic blueprint we have is the one attached to most people’s wrists. Yet the pursuit of the ultimate five-digit grasp isn’t necessarily the logical next step. In fact, history suggests that people haven’t always been fixated on perfectly re-creating the human hand.
As recounted in the 2001 essay collection Writing on Hands: Memory and Knowledge in Early Modern Europe, ideas about the hand evolved over the centuries. “The soul is like the hand; for the hand is the instrument of instruments,” Aristotle wrote in De Anima. He reasoned that humanity was deliberately endowed with the agile and prehensile hand because only our uniquely intelligent brains could make use of it—not as a mere utensil but a tool for apprehensio, or “grasping,” the world, literally and figuratively.
More than 1,000 years later, Aristotle’s ideas resonated with artists and thinkers of the Renaissance. For Leonardo da Vinci, the hand was the brain’s mediator with the world, and he went to exceptional lengths in his dissections and illustrations of the human hand to understand its principal components. His meticulous studies of the tendons and muscles of the forearm and hand led him to conclude that “although human ingenuity makes various inventions…it will never discover inventions more beautiful, more fitting or more direct than nature, because in her inventions nothing is lacking and nothing is superfluous.”
Da Vinci’s illustrations precipitated a wave of interest in human anatomy. Yet for all of the studious rendering of the human hand by European masters, the hand was regarded more as an inspiration than as an object to be replicated by mere mortals. In fact, it was widely accepted that the intricacies of the human hand evidenced divine design. No machine, declared the Christian philosopher William Paley, is “more artificial, or more evidently so” than the flexors of the hand, suggesting deliberate design by God.
Performing tasks the cool bionic way, even though it mimicked having two hands, wasn’t obviously better than doing things my way, sometimes with the help of my legs and feet.
By the mid-1700s, with the Industrial Revolution in the global north, a more mechanistic view of the world began to emerge, and the line between living things and machines began to blur. In her 2003 article “ Eighteenth-Century Wetware,” Jessica Riskin, professor of history at Stanford University, writes, “The period between the 1730s and the 1790s was one of simulation, in which mechanicians tried earnestly to collapse the gap between animate and artificial machinery.” This period saw significant changes in the design of prosthetic limbs. While mechanical prostheses of the 16th century were weighed down with iron and springs, a 1732 body-powered prosthesis used a pulley system to flex a hand made of lightweight copper. By the late 18th century, metal was being replaced with leather, parchment, and cork—softer materials that mimicked the stuff of life.
The techno-optimism of the early 20th century brought about another change in prosthetic design, says Wolf Schweitzer, a forensic pathologist at the Zurich Institute of Forensic Medicine and an amputee. He owns a wide variety of contemporary prosthetic arms and has the necessary experience to test them. He notes that anatomically correct prosthetic hands have been carved and forged for the better part of 2,000 years. And yet, he says, the 20th century’s body-powered split hook is “more modern,” its design more willing to break the mold of the human hand.
“The body powered arm—in terms of its symbolism—(still) expresses the man-machine symbolism of an industrial society of the 1920s,” writes Schweitzer in his prosthetic arm blog, “when man was to function as clockwork cogwheel on production lines or in agriculture.” In the original 1920s design of the Hosmer Hook, a loop inside the hook was placed just for tying shoes and another just for holding cigarettes. Those designs, Ad Spiers told me, were “incredibly functional, function over form. All pieces served a specific purpose.”
Schweitzer believes that as the need for manual labor decreased over the 20th century, prostheses that were high-functioning but not naturalistic were eclipsed by a new high-tech vision of the future: “bionic” hands. In 2006, the U.S. Defense Advanced Research Projects Agency launched Revolutionizing Prosthetics, a research initiative to develop the next generation of prosthetic arms with “near-natural” control. The $100 million program produced two multi-articulating prosthetic arms (one for research and another that costs over $50,000). More importantly, it influenced the creation of other similar prosthetics, establishing the bionic hand—as the military imagined it—as the holy grail in prosthetics. Today, the multigrasp bionic hand is hegemonic, a symbol of cyborg wholeness.
And yet some prosthetic developers are pursuing a different vision. TRS, based in Boulder, Colo., is one of the few manufacturers of activity-specific prosthetic attachments, which are often more durable and more financially accessible than robotic prosthetics. These plastic and silicone attachments, which include a squishy mushroom-shaped device for push-ups, a ratcheting clamp for lifting heavy weights, and a concave fin for swimming, have helped me experience the greatest functionality I have ever gotten out of a prosthetic arm.
Such low-tech activity prostheses and body-powered prostheses perform astonishingly well, for a tiny fraction of the cost of bionic hands. They don’t look or act like human hands, and they function all the better for it. According to Schweitzer, body-powered prostheses are regularly dismissed by engineers as “arcane” or derisively called “Captain Hook.” Future bionic shoulders and elbows may make a huge difference in the lives of people missing a limb up to their shoulder, assuming those devices can be made robust and affordable. But for Schweitzer and a large percentage of users dissatisfied with their myoelectric prosthesis, the prosthetic industry has yet to provide anything fundamentally better or cheaper than body-powered prostheses.
Bionic hands seek to make disabled people “whole,” to have us participate in a world that is culturally two-handed. But it’s more important that we get to live the lives we want, with access to the tools we need, than it is to make us look like everyone else. While many limb-different people have used bionic hands to interact with the world and express themselves, the centuries-long effort to perfect the bionic hand rarely centers on our lived experiences and what we want to do in our lives.
We’ve been promised a breakthrough in prosthetic technology for the better part of 100 years now. I’m reminded of the scientific excitement around lab-grown meat, which seems simultaneously like an explosive shift and a sign of intellectual capitulation, in which political and cultural change is passed over in favor of a technological fix. With the cast of characters in the world of prosthetics—doctors, insurance companies, engineers, prosthetists, and the military—playing the same roles they have for decades, it’s nearly impossible to produce something truly revolutionary.
In the meantime, this metaphorical race to the moon is a mission that has forgotten its original concern: helping disabled people acquire and use the tools they want. There are inexpensive, accessible, low-tech prosthetics that are available right now and that need investments in innovation to further bring down costs and improve functionality. And in the United States at least, there is a broken insurance system that needs fixing. Releasing ourselves from the bionic-hand arms race can open up the possibilities of more functional designs that are more useful and affordable, and might help us bring our prosthetic aspirations back down to earth.

source

× How can I help you?